
Unix Makefile
An Advanced Introduction to

Unix/C Programming

John Dempsey
COMP-232 Programming Languages

California State University, Channel Islands

1

make/makefile – What is it?

COMP-232 Programming Languages 2

• make is a GNU utility used to maintain groups of programs.

• make can be used to automatically determine which programs from a
need to be recompiled.

• For large programs, make automatically determines and compiles one
or more source code files used to write large programs.

makefile

• To execute commands in the makefile, you simply type: make

• Make will look for the makefile named in the following order:

 GNUmakefile, makefile, and Makefile

• You can also specify a makefile by using the –f option: make –f
mymake.mk

COMP-232 Programming Languages 3

makefile Example
Makefile for LAB 2

CFLAGS=-g

all: age ratio retire stacks

age: age.o

 gcc $(CFLAGS) age.c -o age

ratio: ratio.o

 gcc $(CFLAGS) ratio.c -o ratio

retire: retire.o

 gcc $(CFLAGS) retire.c -o retire

stacks: stacks.o

 gcc $(CFLAGS) stacks.c -o stacks

clean:

 rm *.o age ratio retire stacks

COMP-232 Programming Languages 4

makefile
john@oho:~/LAB2$ ls
Makefile age.c car.c ratio.c retire.c

john@oho:~/LAB2$ make car To compile just car.c, use “make car”
cc -g -c -o car.o car.c
gcc -g car.c -o car

john@oho:~/LAB2$ make To compile all programs, use “make” or “make all”
cc -g -c -o age.o age.c
gcc -g age.c -o age
cc -g -c -o ratio.o ratio.c
gcc -g ratio.c -o ratio
cc -g -c -o retire.o retire.c
gcc -g retire.c -o retire

john@oho:~/LAB2$ make
make: Nothing to be done for 'all’.

john@oho:~/LAB2$ ls
Makefile age.c ratio.c retire retire.o stacks stacks.o
age age.o ratio ratio.o retire.c stacks.c

COMP-232 Programming Languages 5

makefile Notes

• When writing a makefile, you need to use the <TAB> character.

• Since the TAB is not viewable, many programmers have lost an infinite
amount of time because they used spaces instead!!!

• To continue to the next line, use \ (without a space).

• I prefer using upper case Makefile instead of makefile because
Makefile will usually be listed before your source code files.

COMP-232 Programming Languages 6

makefile – Multiple Source Code Files
• Large programs are divided into multiple source code files with each file

containing one or more defined functions.

• A makefile will:
• Identify all source code files needed to compile the project.

• Identify compiler options, e.g., CFLAGS=-m64 –w –g –DORACLE_DB

• Identify the location for include files to use, e.g., -I/project/includes -I.

• Identify which libraries to use, e.g., -lm

• Specify how to compile .c files into .o files.

• Specify preprocessor commands, e.g., proc to compile embedded Oracle code.

• Specify how to create an executable file to run.

• Specify additional commands, like clean up or startup commands.

COMP-232 Programming Languages 7

makefile - Multiple Source Code Files

COMP-232 Programming Languages 8

john@oho:~/MAKEFILE$ ls
Makefile four.c main.c one.c three.c two.c

#include <stdio.h>
main()
{
 one();
 two();
 three();
 four();
 printf("All Done.\n");
}

#include <stdio.h>
one() { printf("One ...\n"); }

#include <stdio.h>
two() { printf("Two ...\n"); }

#include <stdio.h>
three() { printf("Three ...\n"); }

#include <stdio.h>
four() { printf("Four ...\n"); }

john@oho:~/MAKEFILE$ more Makefile
SOURCE=\
 main.c\
 four.c\
 one.c\
 three.c\
 two.c

CFLAGS =-m64 -w -g
DEFINES =-DORACLE

OBJS =$(SOURCE:.c=.o)

main: $(OBJS)
 $(CC) $(CFLAGS) $(OBJS) -lm -I. -O -o $@
 ls -l main

clean:
 rm *.o main

install:
 cp –p main /home/production/main

john@oho:~/MAKEFILE$ ls
Makefile four.c main.c one.c three.c two.c

john@oho:~/MAKEFILE$ make
cc -m64 -w -g -c -o main.o main.c
cc -m64 -w -g -c -o four.o four.c
cc -m64 -w -g -c -o one.o one.c
cc -m64 -w -g -c -o three.o three.c
cc -m64 -w -g -c -o two.o two.c
cc -m64 -w -g main.o four.o one.o three.o two.o -lm -I. -O -o main
ls -l main
-rwxr-xr-x 1 john john 24736 Jan 4 11:17 main

john@oho:~/MAKEFILE$ ls
Makefile four.o main.c one.c three.c two.c
four.c main main.o one.o three.o two.o

john@oho:~/MAKEFILE$ main
One ...
Two ...
Three ...
Four ...
All Done.

Makefile Comment
One of the main advantage in using Makefiles in the past was to only
compile those modules that changed since the last recompile.

Today, Makefiles help to organize and identify which modules are
needed to build executables.

They also identify how to compile a program. E.g., an Oracle
myCode.pc will need a preprocessor proc to run first in order to
generate the myCode.c file that is compiled by gcc.

COMP-232 Programming Languages 9

	Slide 1: Unix Makefile An Advanced Introduction to Unix/C Programming
	Slide 2: make/makefile – What is it?
	Slide 3: makefile
	Slide 4: makefile Example
	Slide 5: makefile
	Slide 6: makefile Notes
	Slide 7: makefile – Multiple Source Code Files
	Slide 8: makefile - Multiple Source Code Files
	Slide 9: Makefile Comment

